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Higher-order (LT/QN) vector finite elements for
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Abstract- Chapter 8], also using CT/LN elements; Webb's review pa-
The finite element (FE) formulation for waveguide discontinuity per discussed a number of related issues but did not address

analysis is reviewed and extended to multiple, arbitrarily-oriented higher-order elements [4]; and Pekel and Lee addressed the-
ports. Several higher-order vector elements - specifically hierarchal
linear tangential/quadratic normal (LT/QN) - are compared, and the oretical aspects of mesh refinement using an empty piece of
extensions required to incorporate LT/QN elements in the formulation waveguide, but again did not explicitly discuss higher-order
are presented. The improved accuracy afforded by LT/QN elements elements [5]. Scott addressed rotationally symmetric waveg-
compared to constant tangential/linear normal (CT/LN) elements is
investigated by considering energy conservation in an empty waveg-
uide. Results obtained using both CT/LN and LT/QN elements are also higher-order elements [6].
shown for a problem of engineering interest: an E-plane bend. Results The contributions of this paper are the following. Firstly,
for the LT/QN elements compare especially well to approximate ana- Jin's formulation is extended to arbitrarily oriented waveg-
lytical results using quite coarse meshes. The paper concludes with a

discussion of the use of iterative solvers and possible convergence prob- uides (Jin's formulation assumes i orientation), with multi-
lems encountered when using higher-order elements. ple ports (Jin assumes two port devices). Secondly, the avail-

Keywords- Finite element method; higher-order vector elements; able higher-order vector elements are reviewed, and some
waveguide discontinuities. unifying themes underlying these are identified. Thirdly, the

necessary extensions to include higher order vector elements

I. INTRODUCTION in the formulation are outlined. Fourthly, the accuracy ob-
ihas been a tained vs. element size and number of degrees of freedomThe analysis of waveguide discontinuities ha ena for CT/LN and linear tangential / quadratic normal (LTIQN)

canonical problem for analytical, approximate, and now nu- e leme nt i inesta ngeenergy/conserati on

merical approaches since the pioneering work of Marcuvitz elements is investigated by monitoring energy conservation

and colleagues during the Second World War, now some in a piece of empty guide. Finally, the extended formula-

sixty years back. Using variational formulations, and quasi- tion and implementation is validated - and the far greater

static approximations of the fields, Marcuvitz et al. were accuracy obtainable with the LT/QN elements demonstrated

able to analyze an extraordinary variety of problems, docu- again - by analyzing a realistic waveguide problem in X-

mented in the classic text [1]. Subsequently, mode-matching band waveguide, namely an E-plane bend. Results for this

methods were introduced for the analysis of "stepped" dis- are compared with Marcuvitz's.

continuities - i.e. structures where the waveguide modes Some aspects of this paper were originally presented in

could be computed in a step-wise fashion, and matched at [7]. However, the formulation presented therein is Jin's,

two-dimensional planes. However, for general, arbitrary dis- and does not incorporate the new extensions to be presented

continuities, and of course those involving non-metallic dis- here, which are required to analyze general waveguide struc-

continuities such as dielectrics, differential equation based tures (such the E-plane bend analyzed here). Furthermore,

methods such as the finite element method (FEM) and finite the discussion of higher-order elements has been extensively

difference time domain (FDTD) method are now the meth- revised, to highlight the connection between different pub-

ods of choice. lished elements. Finally, some problems regarding conver-

Although an obvious application of the FEM, disconti- gence of the iterative solvers which have emerged subse-

nuities in rectangular waveguide have not been widely ad- quent to [7] are discussed.

dressed in the literature, in particular using higher-order el-
ements. Ise [2] used "brick" elements of "first" order (con-
stant tangential / linear normal - CT/LN) to analyze both a The formulation is a straightforward extension of Jin's ap-
dielectric post and a concentric step discontinuity in rectan- proach [3]. His formulation addressed two-port, single mode
gular waveguide ; Jin presented a detailed formulation in [3, analysis, with the waveguide oriented in the i-direction.

1054-4887 © 2002 ACES
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Here, general waveguide orientation(s) will be considered. Similar comments apply as regards the e-jk'Co( term. The
The formulation assumes hollow, rectangular guide at the boundary condition at port two is
ports (although the extension to homogeneously filled guide
is straightforward). The TE 10 mode is assumed in the fol- hi x (V x fl) + yit x (ft x/.) 0 (5)
lowing. In between the ports, in the region to be discretized In Jin's original formulation, eqn. (4) was written as
using finite elements, the waveguide may contain linear, in-
homogeneous, lossy, dielectric and/or magnetic material(s);
and/or conductors (for instance, posts or irises); and may •(x, y, z) = fItrans(Xy, Z)
change orientation (eg E-plane bends) or dimension (eg E- = TEo61o(x,y)e-ik,1oz (6)
and/or H-plane steps). The formulation to be used does,
however, assume isotropic media. The generalization of In this approach, z = zl at port 1, z = z 2 at port 2, thus the
the analysis to multiple ports, the inclusion of higher-order phase in Jin's formulation was referenced to each port. In the
modes, and the extension to more general waveguide, will present formulation, the transmission coefficient T incorpo-
be outlined subsequently. rates the "insertion" phase - i.e. for a section of empty

guide length f, T will have phase angle -k,, 0o£, whereas in
A. Formulation overview Jin's formulation, the phase was 0. The present formula-

The key part of the formulation is to write the electric field tion produces the same phase that would be measured us-

at port I (SI) as the sum of the known incident and unknown ing a vector network analyzer, with reference planes cali-

reflected fields in terms of the (ý, 7), () coordinate system brated at the ports. (Jin's approach worked well for straight

local to the port, with ( in the direction of propagation, and waveguide, but is inappropriate for "bent" guides or multiple

set to zero at each port, as follows: ports.)
The equivalent variational functional (assuming isotropic

but possibly lossy materials), subject to these boundary con-
,7, •) -- inc(•, , +) f fref(, l , •) ditions on the ports and Etan = 0 on the perfectly conduct-

- (Eoelo(ý, 77)e-jkýo°( + ing walls, is well known:

R E o elo( , , 1)e+ jk (o <)j1 =0  (1) 1 dV
F(E•) = ixff.([xE k~r• jd

e' o(r,7) is the relevant waveguide eigenmode (the TE10  
i 1 fov

eigenmode here) and k¢l° is the modal propagation constant. +ff [(-hX!)'(ftX)+9-'OinC dS
Note that it is necessary to retain the e-jk¢•o' term, even 1  J

though the field is evaluated at ( = 0, since the boundary XdS (7)
condition to be discussed involves the derivative of the field, +( )( ) '
which must be evaluated before setting • = 0.2

whic mut b evluaed bfor setin ( 0.The FE discretization of this functional is discussed in Sec-
The next key element of the formulation is to convert the Isc

eqn. (1) to a boundary condition of the third type involving tion IV.
both the field and its normal derivative; the detail is given in B. Computation of the S-parameters
[3, §.]

The above formulation produces R and T for port 1 (S 11

it X (V x f) + "fht (ht < /) = 0inc (2) and S2 1 ). It must be repeated with an incident field at port 2
to obtain S12 and S 22 . Only the excitation vector changes, so

with this is simply a question of repeating the matrix solve. For
multiple ports, the extension is obvious: T is computed at

y = jk(,1, Uinc =- _2jk• 0 •Einc (3) each port, producing one column of the S matrix. The exci-
tation is then repeated at each port to produce other columns.

It should be noted that, in obtaining eqn. (2), the transverse- atho u it will n t e s ow i th pape the for muai

only nature of the TE field is exploited. TM modes contain Although it will not be shown in this paper, the formulation

axial E field components, and the boundary condition cannot has also been verified successfully by the author for a four-

thus be written for an E field solver. TM mode analysis port device.

could be undertaken by using an fl field solver. The S-parameters may be computed directly from the
The same is repeated at port 2, but at that port, there is fields on the ports. A more accurate approach uses the or-only an unknown transmitted field: thogonality of the modes to integrate the fields computed

over each port [3, §8.5]; as an example for the two-port ex-
ample, the transmission coefficient is given by:

- TEoo(•, 7 )e-ko =o (4) T- abEo f •(7,( , el "los(,q)dS (8)
T~o,, o ý, 7) e Eo 2
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As before, e'0o(6, 7) is the relevant waveguide eigenmode; a has now largely supplanted "edge elements". For CT/LN el-
and b are the waveguide dimensions. ements, some researchers have associated the degree of free-

dom with the tangential field at the centre of each edge [11].
C. The waveguide formulation: another perspective

The formulation can be viewed as a finite ele- B. Vector vs. mixed-order elements

ment/boundary integral (FE/BI) formulation, using the It is not always appreciated that being of mixed-order is
waveguide Green's function for "exact" mesh termination, not an essential property of vector elements per se. Coin-
(For radiation or scattering problems, FE/BI formulations plete sets of vector elements have also been described [9],
use the free space, or sometimes the half-space, Green's with degrees of freedom proportional to tangential field com-
function, eg. [3, §9.3]). The current dominant-mode-only ponents, as for mixed-order elements. (This permits explicit
analysis uses only the first in the infinite series of modes enforcement of tangential field continuity only, as for mixed-
comprising the waveguide Green's function. It is accurate order elements. As is well known, this type of field continu-
provided that the ports are sufficiently far removed from the ity is very difficult to arrange in general with nodal-based el-
discontinuities (assuming, of course, that only the dominant ements, which are also generally complete). However, such
mode is above cut-off). Higher order modes are easily in- complete sets of vector element produce "wasted" d.o.f.'s for
eluded in the formulation; this does require re-computing wave eigenvalue problems. See [12] for a comprehensive
both the LHS matrix and RHS vector, since the former has discussion of this. In essence, Nedelec's constraints provide
one term dependent on the propagation constant, and the mixed-order elements that model the curl-space as efficiently
latter is obviously dependent on the incident mode shape. as possible, for a given number of degrees of freedom. Re-
The formulation presently assumes hollow waveguide at the cent work by Webb [ 13] has indicated that some vector elec-
ports; i.e. only TE (and TM modes, if an H field solver is tromagnetic problems are more efficiently analyzed using
also implemented) are included. More exotic modes, or nu- complete-order vector elements, typically when the solution
merically determined ones, could also be incorporated into is dominated by electric fields strongly "gradient" in nature.
the formulation. This is discussed further in Section VI. (The specific example Webb uses is an iris in a waveguide,

where the solution is strongly dominated by quasi-static fieldIII. HIGHER ORDER VECTOR ELEMENTS cmoet)components).

A. Vector elements - a brief review

Edge elements (also known as Nedelec elements; Whit- C. Higher order elements

ney elements/forms; CT/LN elements; Ho(curl) elements) Although extending the "edge" elements to higher order
were introduced during the 1980's. Nedelec [8] provided the became a topic of interest as soon as the CT/LN elements
mathematical framework for mixed order finite elements of achieved widespread acceptance, it remains a topic of active
various order. However, the polynomial spaces from which research at present, a decade or more later. Development of
the basis functions were to be chosen were defined by him such elements raises a number of issues, including: hierar-
in terms of Cartesian coordinates, which is not the form vec- chal vs. interpolatory behaviour; methods for the construc-
tor elements are generally given in now. Cendes, Bossavit, tion of the element shape functions; the interpretation of the
Webb and others introduced vector elements to EM FEA degrees of freedom; the construction of prototype elemental
analysis during the late 1980's and 1990's. (See [9] for the matrices (analytical vs. quadrature); and the efficient itera-
original references). The element shape function was then tive solution of the poorly conditioned linear algebra systems
presented in terms of simplex coordinates [10], as what is which unfortunately often result.
now recognized as a Whitney form, dating back to much ear-
lier work by Whitney: C. 1 Hierarchal higher order LT/QN elements

For mesh refinement/enrichment purposes, hierarchal el-
Wikj = AiV/j - AjVA (9) ements are required, and this paper considers only the use

This element has the well-known properties of constant of such elements. Interpolatory elements have been com-
tangential/linear normal field (CT/LN) approximation along prehensively described in [14]. Two specific hierarchal ele-
edges (hence, of mixed order). Since the approximation is ments have been used; the work was originally undertaken
constant in the direction tangential to the edge connecting [15], [16], [7] using those proposed by Savage [17]; see Ta-
nodes i and j, and perpendicular to all the other edges (two, ble I. Subsequently, the elements proposed by Andersen and
for triangles, or five, for tetrahedrons), the degrees of free- Volakis [18], [19] have also been implemented.
dom, defined by Nedelec as the line integrals of the finite As per Nedelec's definitions of suitable mixed order ele-
element approximation along the respective edges, are sim- ment, there are twenty vector based functions (v.b.f.'s) and
ply the tangential fields - hence the name "edge elements", degrees of freedom (d.o.f.'s) per tetrahedron. The lowest or-
For higher order elements, additional degrees of freedom on der v.b.f. - the Whitney form - has the usual properties,
faces must be introduced, and the name "vector elements" and the accompanying d.o.f. is proportional to the tangen-
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CT/LN CT/LN - all
Edge-based I per edge )iV•j -_ )jv/i Edge-based I per edge A >iVA i - Aj VA,LT/QN - Savage

LT/QN Edge-based I per edge V Ai Aj
Edge-based 1 per edge V(AiAj) Face-based 2 per face Ai(A 3V)k - AkVA,)
Face-based 2 per face Ai(AjVAk - Ak7Aj) (and {ji; i; k) but not {Ik; i; j))

Face-based o possible) (jLT/QN - Webb and Forghani
(out of 3 possible) Edge-based I per edge VAiAj)

Face-based 2 per face As, kkVAj
TABLE I (and {j; k; i} but not {i; j; k})

SAVAGE'S LT/QN HIERARCHAL ELEMENTS. LT/QN - Andersen and Volakis
Edge-based I per edge (AN - A7) x

(Ai VA•j - Aj VAj)
Face-based 2 per face A, (Aj VAk - Ak VAj)

(as for Savage's elements)

tial electric field on the edge. Since the element shape func-
tions are hierarchal, higher-order d.o.f.'s are not located at TABLE II

specific points, but defined as weighted field quantities in- COMPARISON OF VARIOUS HIERARCHAL LT/QN ELEMENT SCHEMES.

tegrated over the relevant edge or face. The latter has the
interpretation as the flux through the face.

Many other hierarchal elements have been published, in
particular of LT/QN order. Most of these (including those of has shown that all these basis functions satisfy the Nedelec
Savage described above) can be seen as variants of the el- constraints (restrictions on the properties of the polynomial
ements proposed by Webb and Forghani [20]. (Indeed, not spaces from which they are chosen) and thus (from [8, The-
only are these variants on a theme, they are also linear trans- orem 1]) the elements are indeed both conforming and uni-
forms, as will be discussed subsequently). A number are solvent. This proof requires expressing the basis functions
summarized in Table II. Note that all the face elements ex- in Cartesian coordinate form and then testing the Nedelec
clude (arbitrarily) one possible combination of {i; j; k}; this constraints explicitly; it will not be detailed here.
asymmetry has long been noted, and is required to avoid lin- There is another school of thought regarding the con-
early dependent basis functions. struction of higher-order basis functions, which might be

An apparent exception to this are the elements proposed described as the degree of freedom-centered approach (as
by Andersen and Volakis [18], [19]; the additional six vec- opposed to the above, which could be described as the ba-
tor based functions for the edges are apparently of quadratic sis function-centered approach). Salazar-Palma et al. [11]
order. However, the Andersen and Volakis elements are lin- use elements from the Nedelec polynomial space and en-
ear transforms of the (non-hierarchal) elements proposed in force Lagrangian interpolatory properties on the degrees of
[21 ] (the explicit transform for the two dimensional case was freedom. This produces interpolatory elements with well-
given in [19]) and the hierarchal elements proposed by Sav- defined degrees of freedom at points, but this is not possible
age [ 17] - and used here - are in turn linear combinations in general with higher-order hierarchal elements. Yioultsis
of those in [21], thus the Andersen and Volakis elements are and Tsikboukis take a similar degree-of-freedom centered
linear transforms of Savage's [ 17]. approach, but working with simplex instead of Cartesian co-

It might seem strange that the Andersen and Volakis el- ordinates [22].
ements, with apparently quadratic behaviour, can be ex-
pressed as linear combinations of elements with at most lin- IV. IMPLEMENTATION ISSUES
ear field dependence. This is a consequence of the mixed-
order nature of the basis functions, and of course the linearly A. Finite element discretization

dependent nature of simplex coordinates (Ei=1 Ai = 1, with
N = 2, 3 or 4 in one, two or three dimensions respectively). The finite element discretization of the volumetric integral
The (AiVAj - AjVAi) term is of course the Whitney ele- term is identical to that of cavity eigenanalysis. This has
ment, with CT/LN behaviour along edges; multiplication by been described in several references (such as [3], [23], [211],
the (Ai - Aj) term (actually the Legendre polynomial P1 re- [24]) and will not be discussed further here.
defined on the interval [0, 1]) yields the LT/QN behaviour. Discretization of the surface integral terms, which arises

These elements are generally constructed by "inspection", due to the introduction of the ports, requires compatible sur-
using the properties of simplex coordinates, and the gradi- face basis functions. This is discussed in Jin in detail [3,
ents thereof. Nedelec required that these functions be uni- §8.5], and need only be outlined here, since the extension to
solvent (that is, linearly independent) and conforming (that higher-order elements is obvious. Generation of the volu-
is, d.o.f.'s are proportional to integrals of the tangential field metric tetrahedral mesh automatically generates a triangular
along edges, or over faces). The latter is easily established by surface mesh. Suitable basis functions also implicitly de-
inspection, but the former is less obvious. The present author fined, as follows:
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h N CT/LN LT/QN
(.m) Do.f.s IS211 I S 2 1  D.o..s IS 2 1 1 LS21

(dB) (0) (dB) (o)

es = )Tjgs( 2064 20 14 -16.18 134.4 96 -0.4113 22.11fi = ES 13.8 43 29 -4.538 5.602 202 -0.3001 6.077
987 105 73 -I.157 .38.57 498 .0.01575 -0.2293

,=1 731 234 172 .0.5191 .19.72 1144 -2.78E.3 0.0448

647 369 273 -0,7414 .31.87 1810 -2.26E-3 -0,1619
with {Es} are the degrees of freedom associated with the 4.99 697 600 .0.1944 -3.615 3700 .4.34E-4 0.0251

(surface) triangular elem ent. 4.2 1125 962 -01455 -0.561 5940 -9,56E.4 0.0546

The surface basis functions are: TABLE III

S 2 1 FOR AN EMPTY SECTION OF WAVEGUIDE FOR THE DOMINANT

= - x. (11) TEIo MODE AS A FUNCTION OF THE AVERAGE EDGE LENGTH h [MM]

N,ý are the appropriate tetrahedral functions for the face. AND NUMBER OF ELEMENTS N.
Note that for CT/LN elements, this magnetic surface cur-

rent (fL x f') discretization is identical to that produced by
standard moment method RWG elements [25], providing a is modest, and of O(N). As an example, a symmetric rule
linear tangential/constant normal approximation of the cur- of degree of precision four requires only eleven points, and

rent. this is sufficient for LT/QN basis functions. (The elemental

B. Elemental matrices and matrix assembly matrix entries in this case require at most the integration of
the product of quadratics, i.e. a polynomial of order four).

A new elemental matrix and vector are required:

V. RESULTS

[B"] = / yfs . §'dS (12) The theory discussed above has been implemented in a
Iso finite element code developed by the author, his students and
L industrial colleagues. The code uses the same graphical user

{b} = ,. x in)dS (13) interface as the commercial package FEKO, and is calledSf 2FEMFEKO 
[27].

Here, 'y is as in eqn. (3), and !'i"c is the incident field, as A. Emptyguide
before.

[B'] can be evaluated in closed form, since it involves the An empty section of waveguide provides a useful test of
integral of simplex coordinates over both ports - these inte- the performance of the elements, since the results are known
grals are known analytically. {bs} requires quadrature, since exactly. In Table III, the transmission coefficient of a hollow
it involves the product of the incident mode, typically a si- piece of X-band waveguide, 40mm long, is presented. The
nusoid or product of sinusoids, with a vector based function. analytical solution is trivial; the transmission coefficient is 1
A four-point symmetric rule [26] was generally found to be (0dB), with phase angle 00 in Jin's formulation, or -k,, 0og
sufficient, although a six-point rule was also implemented. for the extended formulation presented in this paper, as dis-

The system matrix [A] is assembled from [S], [T] and [B]; cussed in Section II. (The results in Table III were gener-
the forcing vector is {bS}, resulting in the conventional lin- ated with Jin's original formulation, hence the zero phase
ear system [A]{x} = {bs} with {x} the vector of degrees angles). The 20 element result is of course highly inaccurate,
of freedom to be solved for. All these terms are frequency since the problem is badly under-discretized with so few el-
dependent, and [B] and {bs} are additionally also dependent ements. (The guide wavelength was 48.630mm). The mesh
on the mode number and/or mode type (TE or TM), either refinement used in Table III was a simple h-uniform scheme.
via the propagation constant or the modal eigenfunction. Eigenvalue problems are appealing since one quantity (the

Once the system matrix and right hand side vector have eigenvalue) can be checked for convergence (and it is also
been assembled, the system is solved (for multiple RHS's, known that the eigenvalue is variational [28]); for example,
if the full S-matrix is required) and the S parameters are ex- Savage and Peterson reported convergence results for LT/QN
tracted as already discussed in Section II-B. elements for eigenvalue problems in [21]. Investigating the

The [S] and [T] elemental matrices may be pre-computed, convergence of scattering parameters is somewhat more dif-
using explicit forms as given in [3], [23], [21], [24], [15]. ficult. The energy conservation term, IS1 12 + IS21 12, is a
However, a non-trivial amount of analytical work is re- useful overall solution quality indicator, suggested by Jin,
quired for new elements, and the use of cubature (three- and will be used here. For a lossless structure, this should
dimensional quadrature) permits far quicker program devel- of course be unity. Results are presented in Figs.1 and 2.
opment; new element basis functions (and their gradients, The former shows a consistently lower error (result closer
which are straightforward to compute analytically), can be to unity) for the same h - i.e. the same mesh - and thus
added in very quickly. Since the functions being integrated modelling and pre-processing effort, although of course the
are polynomials, and very efficient rules exist for integration solution using LT/QN elements uses many more degrees of
of polynomials over simplexes, the computational overhead freedom. The latter shows a consistently lower error for
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this translates into around 30mm of waveguide between the
o - bend and the port (that is, f - b = 30mm). The geometry is

09, shown in Fig. 3. It is assumed that the waveguide is air-filled,

o86 approximated as free-space.

08

Port 2
•07

06•

00

0 10 5o

h 1-1m

Fig. 1. IS,] 12 + IS2112 versus h, the average edge length in the mesh.

095-'

09

Port 1

O7

065

06 Fig. 3. The E-plane waveguide bend. Total (halo length of the bend is t.

011

10.' 10 10, 10, b
Degrees oF lreedoo

Fig. 2. IS,, 12 + IS21 12 versus the number of degrees of freedom used. d

the same number of degrees of freedom - and thus corn- T
putational effort as well, presuming that efficient solvers are Fig. 4. Side view of the E-plane waveguide bend.

available and unaffected by the use of the higher-order ele-
ments (an assumption that will be discussed subsequently). Yo
This indeed is the major motivation for using higher-order T

elements.

B. Eplane bend Y,

As a test of the general formulation, and also of the rel-
ative performance of the elements, an E-plane bend will be T

analyzed (refer to Fig. 3). The analysis will be performed Fig. 5. Equivalent circuit of the E-plane waveguide bend.

for X-band (+ 8-12 GHz) waveguide. It will be seen that at
the lower frequency band, the bend is largely transparent, but
towards the upper end of the frequency band, the effects of Bicmc
the bend become significant. This problem has an (approxi- suits
mate) analytical solution, which was first derived some sixty The equivalent circuit for the E-plane bend of Fig. 3 as
years ago by Marcuvitz, Schwinger and colleagues, and sub- derived by Marcuvitz [1, pp. 3 12ff] is pure susceptance -
sequently documented in [1]. a shunt inductor, -jB; (B > 0) - at terminal planes T,

This problem was modelled with a section of "dummy" located distance d from the outer comer of the bend. See
waveguide, to ensure that only the dominant TE10 mode is Figs. 4 and 5. In the following, Yo(= I/Zo) is the waveguide
present at the ports. A half-length of 40mm is sufficient; characteristic admittance; Zo = r7/V/1 - (A/(2a)) 2 with
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A the free-space wavelength, 77 the wave impedance of free Clearly, this is case where the LT/QN elements will be
space and Ag = A/ V1 - (A/(2a)) 2 the guide wavelength, required to obtain really good results. These are presented in

The formulation presented in this paper computes S pa- Figs. 8 and 9 for the LT/QN elements. In this case, the phase
rameters, whereas this model is given in terms of a shunt sus- comparison is also shown, in Figs. 10 and 11. Even with
ceptance. There are several methods that may be used to con- the coarse mesh, the results are now acceptable; for the fine
vert Marcuvitz's model to the same format as the present for- mesh, the agreement is excellent across the entire frequency
mulation. A straightforward technique is to find the equiv- band.
alent ABCD model for the shunt susceptance, using tables Both Savage's and Andersen and Volakis's LT/QN ele-
available in standard texts (for example, [29]); then convert ments were used; both perform very well from a viewpoint of
this to S parameters; and finally, embed this within a section accuracy. There was no discernible difference between the
of guide e - d. This procedure will now be applied. S-parameter results computed using them. Since the basis

Firstly, the normalized shunt susceptance and distance d functions are related by a linear transformation, this is to be
can be read off [ l, Fig.5.28-3]. This is then multiplied by the expected. However, both generated ill-conditioned matrices
normalized factor 2Yob/A 9 , giving Bshunt- on occasion. This remains a problem and will be discussed

The ABCD matrix [29, Table 4. 1 ] for this shunt load is: in the next section.

A= 1; B = 0; C =-Bh ; D =.1 (14) C. Iterative solver convergence and computational effi-
ciency

The S-parameters are [29, Table 4.2]: A problem which has not been addressed in this paper

is the issue of computational efficiency. Unfortunately, the

A + B/Zo - CZo - D higher-order elements appear to generate ill-conditioned ma-
811 A + B/Zo + CZo + D trices. The results presented here were obtained using iter-

2(AD - BC) ative solvers for the linear algebra - variants on the conju-

S12 = + B C) gate gradient scheme (CG, Bi-CG), QMR and GMRES, with
simple diagonal pre-conditioning, where relevant - but all

S21 2 converged erratically, some schemes converging rapidly at
A + B/Zo + CZo + D certain frequencies, and then converging very slowly at oth-

-22 = A + B/Zo - CZo + D (15 ers, and also exhibiting different convergence behaviour for
A + B/Zo + CZo + D different geometries. (All converged at an acceptable pace

for the CT/LN elements). This is a problem which is only
Finally, the shunt load is embedded in a line of length hinted at in much of the literature on higher-order vector

d - f. This amounts to changing the phase of the indi- based elements. An exception is the work by Webb [13];
vidual S-parameters by e-i20, with 0 = k,,, (f - d) [29, he proposes a scheme to improve the matrix conditioning
p.202-204], and k,,o = 27r/A. the wavenumber of the TE10  by at least partially orthogonalizing the higher-order basis
mode. This now permits direct comparison between the re- functions. Other recent approaches have focussed on the use
sults computed using the FEM and the approximate results of more sophisticated pre-conditioners. Incomplete LU pre-
derived by Marcuvitz. conditioning is one possibility; another is the use of a di-

rect solution of the CT/LN solution (which can generally be
B.2 Results computed quite cheaply) as a pre-conditioner for the LT/QN

For the results to be presented, two meshes were gen- matrix.
erated; a "coarse"mesh with an average edge length of
about 6mm, and a "fine" mesh, with 3.5mm average edge VI, CONCLUSIONS

length. The problem was run over a frequency range of 8.25- This paper has discussed the use of LT/QN elements for
12.25 GHz, with an accompanying guide wavelength vary- waveguide analysis. As would be expected, the LT/QN el-
ing from about 60-29mm. Thus, at the highest frequency, ements give much better solutions for the same mesh than
the coarse mesh was about A/5 - too coarse for the CT/LN CT/LN elements; this remains true if the number of degrees
elements to generate reliable solutions. The fine mesh should of freedom are compared. Which of the many published
be satisfactory. LT/QN elements are used appears insignificant in terms of

Results are presented in Figs. 6 and 7 for the CT/LN ele- solution accuracy (at least for the E-plane bend analyzed in
ments for the coarse elements. The 811 results for the coarse this paper, as well as several other problems not reported
mesh are indeed very inaccurate. However, the fine mesh here); the choice of element does impact on the convergence
yields acceptable results, although 811 is still not very accu- of the iterative solver, but unfortunately not in a consistent
rately computed. (Note that at the low frequency end, S11 is fashion.
small, and a very accurate solution will be required to obtain Although the performance of higher-order elements is
good agreement.) usually compared with that of lower-order elements in terms
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Fig. 6. Magnitude of the reflection coefficient for the E-plane bend in X- Fig. 9. Magnitude of the transmission coefficient for the E-plane bend in
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of the number of degrees of freedom required for a partic- Discussions regarding general waveguide theory with Profs.
ular accuracy, it is worth making the point that the geomet- John Cloete and Petrie Meyer were helpful. The comments
rical pre-processing (and to a lesser extent, post-processing) of two anonymous reviewers were appreciated, in particu-
required in a real-world FE code is largely a function of the lar as regards the inter-relationship of various higher-order
number of elements, rather than of number of the degrees of elements, as were those of the guest editors. Finally, the
freedom. The time required for this can become a significant (South African) National Research Foundation grants GUN
fraction of the total run-time of the code. This is another 2034087 and 2046872 assisted with infrastructure and schol-
practical advantage of higher-order elements not often men- arships for post-graduate students working with the author.
tioned in the literature.
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